首页> 外文OA文献 >Dead-end filtration of yeast suspensions: correlating specific resistance and flux data using artificial neural networks
【2h】

Dead-end filtration of yeast suspensions: correlating specific resistance and flux data using artificial neural networks

机译:酵母悬浮液的末端过滤:使用人工神经网络关联比电阻和通量数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The specific cake resistance in dead-end filtration is a complex function of suspension properties and operating conditions. In this study, the specific resistance of resuspended dried bakers yeast suspensions was measured in a series of 150 experiments covering a range of pressures, cell concentrations, pHs, ionic strengths and membrane resistances. The specific resistance was found to increase linearly with pressure and exhibited a complex dependence on pH and ionic strength. The specific resistance data were correlated using an artificial neural network containing a single hidden layer with nine neurons employing the sigmoidal activation function. The network was trained with 104 training points, 13 validation points and 33 test points. Excellent agreement was obtained between the neural network and the test data with average errors of less than 10%. In addition, a network was trained for prediction of the filtrate flux directly from the system inputs and this approach is easily extended to crossflow filtration by adding inputs such as the crossflow velocity and channel height. An attempt was made to interpret the network weights for both the specific resistance and flux networks. The effective contribution of each input to the system output was computed in each case and showed trends that were as expected. Although network weights, and consequently the computed effect of each parameter, is different each time a network is changed (depending on the initial weights used in the training process), the variation was low enough for information contained in the network to be interpreted in a meaningful way.
机译:死角过滤中的特定滤饼阻力是悬浮特性和操作条件的复杂函数。在这项研究中,通过一系列150次实验测量了重悬的干燥面包酵母悬浮液的比电阻,该实验涵盖了一系列压力,细胞浓度,pH,离子强度和膜电阻。发现电阻率随压力线性增加,并且表现出对pH和离子强度的复杂依赖性。使用人工神经网络将电阻率数据关联起来,该人工神经网络包含单个隐藏层和九个采用S型激活函数的神经元。该网络接受了104个培训点,13个验证点和33个测试点的培训。在神经网络和测试数据之间获得了极好的一致性,平均误差小于10%。此外,还培训了一个网络来直接从系统输入中预测滤液通量,并且通过添加诸如横流速度和通道高度之类的输入,可以轻松地将此方法扩展到横流过滤。试图解释比电阻和通量网络的网络权重。在每种情况下都计算了每个输入对系统输出的有效贡献,并显示了预期的趋势。尽管每次更改网络时网络权重以及每个参数的计算结果都会有所不同(取决于训练过程中使用的初始权重),但变化程度很小,不足以在网络中解释网络中包含的信息。有意义的方式。

著录项

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号